top of page
SCENITH drawing

"Single Cell

Metabolism

by SCENITH"

 © Olivier Cabaud

2024

  1. Gallerand A, Dolfi B, Stunault MI, et al. Glucose metabolism controls monocyte homeostasis and migration but has no impact on atherosclerosis development in mice. Nature Communications. 2024. https://doi.org/10.1038/s41467-024-53267-5 (Impact factor: 16.6)

  2. Borelli A, Santamaria JC, Zamit C, et al. Lymphotoxin limits Foxp3+ regulatory T cell development from Foxp3lo precursors via IL-4 signaling. Nature Communications. 2024. https://doi.org/10.1038/s41467-024-51164-5 (Impact factor: 16.6)

  3. Maio M, Barros J, Joly M, et al. Elevated glycolytic metabolism of monocytes limits the generation of HIF1A-driven migratory dendritic cells in tuberculosis. Elife. 2024. https://doi.org/10.7554/eLife.89319 (Impact factor: 8.1)

  4. Krug A, Mhaidly R, Tosolini M, et al. Dependence on mitochondrial respiration of malignant T cells reveals a new therapeutic target for angioimmunoblastic T-cell lymphoma. Cell Death Discovery. 2024. https://doi.org/10.1038/s41420-024-02061-9 (Impact factor: 5.8)

  5. Andrews JT, Zhang Z, Prasad GVRK, et al. Metabolically active neutrophils represent a permissive niche for Mycobacterium tuberculosis. Mucosal Immunology. 2024. https://doi.org/10.1016/j.mucimm.2024.05.007 (Impact factor: 7.1)

  6. Nana CMM, Tchakounté BDK, Bitye BMZ, et al. Phenotypic changes of γδ T cells in Plasmodium falciparum placental malaria and pregnancy outcomes in women at delivery in Cameroon. Front Immunol. 2024. https://doi.org/10.3389/fimmu.2024.1385380 (Impact factor: 8.6)

  7. De Biasi S, Gigan JP, Borella R, et al. Cell metabolism: Functional and phenotypic single cell approaches. Methods Cell Biology. 2024. https://doi.org/10.1016/bs.mcb.2024.02.024 (Impact factor: 3.5)

  8. Cosgrove J, Marçais A, Hartmann FJ, et al. A call for accessible tools to unlock single-cell immunometabolism research. Nature Metabolism. 2024. https://doi.org/10.1038/s42255-024-01031-w (Impact factor: 19.2)

  9. De Biasi S, Lo Tartaro D, Neroni A, et al. Immunosenescence and vaccine efficacy revealed by immunometabolic analysis of SARS-CoV-2-specific cells in multiple sclerosis patients. Nature Communications. 2024. https://doi.org/10.1038/s41467-024-47013-0 (Impact factor: 16.6)

  10. Iborra-Pernichi M, Ruiz García J, Velasco de la Esperanza M, et al. Defective mitochondria remodelling in B cells leads to an aged immune response. Nature Communications. 2024. https://doi.org/10.1038/s41467-024-46763-1 (Impact factor: 16.6)

  11. Ibusuki A, Kawai K, Nitahara-Takeuchi A, et al. TCR signaling and cellular metabolism regulate the capacity of murine epidermal γδ T cells to rapidly produce IL-13 but not IFN-γ. Front Immunol. 2024. https://doi.org/10.3389/fimmu.2024.1361139 (Impact factor: 8.6)

  12. Joulia E, Michieletto MF, Agesta A, et al. Eomes-dependent mitochondrial regulation promotes survival of pathogenic CD4+ T cells during inflammation. J. Exp. Medicine. 2024. https://doi.org/10.1084/jem.20230449 (Impact factor: 17.6)

  13. Merech F, Gori S, Calo G, et al. Monocyte immunometabolic reprogramming in human pregnancy: contribution of trophoblast cells. Am J Physiol Endocrinol Metab. 2024. https://doi.org/10.1152/ajpendo.00357.2023 (Impact factor: 5.9)

  14. Tagliatti E, Desiato G, Mancinelli S, et al. Microglial TREM2 shapes neuronal bioenergetics during development. Immunity. 2024. https://doi.org/10.1016/j.immuni.2023.12.002 (Impact factor: 43.5)

 

2023

  1. Adamik J, Munson P, Maurer DM, et al. Immuno-Metabolic Dendritic Cell Vaccine Signatures Associate with Overall Survival in Vaccinated Melanoma Patients. Nature Communications. 2023. https://doi.org/10.1038/s41467-023-42881-4 (Impact factor: 16.6)

  2. Jaeger M, Anastasio A, Brustlein S, et al. Light-inducible T cell engagers trigger, tune and shape the activation of primary T cells. PNAS. 2023. https://doi.org/10.1073/pnas.2302500120 (Impact factor: 11)

  3. Kostel Ba S, Giuliani S, Block J, et al. A novel inborn error of immunity with biallelic mutations in NFATC1 impairing the CD8+ T-cell function via perturbed glycolysis. Blood. 2023. https://doi.org/10.1182/blood.2022018303 (Impact factor: 25.7)

  4. Chimge NO, Chen MH, Nguyen Cu, et al. A Deeply Quiescent Subset of CML LSC Depend on FAO Yet Avoid Deleterious ROS by Suppressing Mitochondrial Complex I. Current Mol. Pharmacology. 2023. http://dx.doi.org/10.2174/1874467217666230906092236 (Impact factor: 4)

2022

  1. Adamik J, Munson P, Hartmann FJ, et al. Distinct Metabolic States Guide Maturation of Inflammatory and Tolerogenic Dendritic Cells. Nature Communications. 2022. https://doi.org/10.1038/s41467-022-32849-1 (Impact factor: 14.9)

  2. Hong HS, Mbah NE, Shan M, et al. OXPHOS Promotes Apoptotic Resistance and Persistence in TH17 cells. Science Immunology. 2022. https://www.science.org/doi/10.1126/sciimmunol.abm8182 (Impact factor: 17.7)

  3. Swatler J, Lo Tartaro D, Borella R, et al. Dysfunctional subsets of CD39+ T cells, distinct from PD-1+, driven by leukemic extracellular vesicles in myeloid leukemias. Haematologica. 2022. https://doi.org/10.3324/haematol.2022.281713 (Impact factor: 11.04)

  4. Michaudel C, Danne C, Agus A, et al. Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases. Gut. 2022. http://dx.doi.org/10.1136/gutjnl-2022-327337 (Impact factor: 31.8)

  5. Dolfi B, Gallerand A, Firulyova MM, et al. Unravelling the sex-specific diversity and functions of adrenal gland macrophages. Cell Reports. June 2022. https://doi.org/10.1016/j.celrep.2022.110949 (Impact factor: 9.4)

  6. Corral D, Charton A, Krauss MZ, et al. ILC precursors differentiate into metabolically distinct ILC1-like cells during Mycobacterium tuberculosis infection. Cell Reports. 2022. https://doi.org/10.1016/j.celrep.2022.110715 (Impact factor: 9.4)

  7. Verberk SGS, de Goede KE, Gorki FS, et al. A toolbox to profile immunometabolism tested in macrophages. Cell reports methods. 2022. https://doi.org/10.1016/j.crmeth.2022.100192 (Impact factor: 10.6)

2021

  1. Bosc C, Saland E, Bousard A, et al. Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nature Cancer. 2021. https://doi.org/10.1038/s43018-021-00264-y (Impact factor: 24)

  2. Lopes N, McIntyre C, Martin S, et al. Distinct metabolic programmes control the effector fate of γδ T cell subsets and their activities in the tumour microenvironment. Nature Immunology. 2021. https://doi.org/10.1038/s41590-020-00848-3 (Impact factor: 27)

2020

  1. Argüello RJ, Combes AJ, Char R, et al. SCENITH: A flow cytometry based method for functional profiling energy metabolism with single cell resolution. Cell Metabolism. December 2020. DOI:10.1016/j.cmet.2020.11.007 (Impact factor: 31.3).*lead author. (Impact factor: 31.3).

    • >100 citations;  >600 laboratories testing the SCENITH technology.

bottom of page