"Single Cell
Metabolism
by SCENITH"
© Olivier Cabaud
2024
-
Gallerand A, Dolfi B, Stunault MI, et al. Glucose metabolism controls monocyte homeostasis and migration but has no impact on atherosclerosis development in mice. Nature Communications. 2024. https://doi.org/10.1038/s41467-024-53267-5 (Impact factor: 16.6)
-
Borelli A, Santamaria JC, Zamit C, et al. Lymphotoxin limits Foxp3+ regulatory T cell development from Foxp3lo precursors via IL-4 signaling. Nature Communications. 2024. https://doi.org/10.1038/s41467-024-51164-5 (Impact factor: 16.6)
-
Maio M, Barros J, Joly M, et al. Elevated glycolytic metabolism of monocytes limits the generation of HIF1A-driven migratory dendritic cells in tuberculosis. Elife. 2024. https://doi.org/10.7554/eLife.89319 (Impact factor: 8.1)
-
Krug A, Mhaidly R, Tosolini M, et al. Dependence on mitochondrial respiration of malignant T cells reveals a new therapeutic target for angioimmunoblastic T-cell lymphoma. Cell Death Discovery. 2024. https://doi.org/10.1038/s41420-024-02061-9 (Impact factor: 5.8)
-
Andrews JT, Zhang Z, Prasad GVRK, et al. Metabolically active neutrophils represent a permissive niche for Mycobacterium tuberculosis. Mucosal Immunology. 2024. https://doi.org/10.1016/j.mucimm.2024.05.007 (Impact factor: 7.1)
-
Nana CMM, Tchakounté BDK, Bitye BMZ, et al. Phenotypic changes of γδ T cells in Plasmodium falciparum placental malaria and pregnancy outcomes in women at delivery in Cameroon. Front Immunol. 2024. https://doi.org/10.3389/fimmu.2024.1385380 (Impact factor: 8.6)
-
De Biasi S, Gigan JP, Borella R, et al. Cell metabolism: Functional and phenotypic single cell approaches. Methods Cell Biology. 2024. https://doi.org/10.1016/bs.mcb.2024.02.024 (Impact factor: 3.5)
-
Cosgrove J, Marçais A, Hartmann FJ, et al. A call for accessible tools to unlock single-cell immunometabolism research. Nature Metabolism. 2024. https://doi.org/10.1038/s42255-024-01031-w (Impact factor: 19.2)
-
De Biasi S, Lo Tartaro D, Neroni A, et al. Immunosenescence and vaccine efficacy revealed by immunometabolic analysis of SARS-CoV-2-specific cells in multiple sclerosis patients. Nature Communications. 2024. https://doi.org/10.1038/s41467-024-47013-0 (Impact factor: 16.6)
-
Iborra-Pernichi M, Ruiz García J, Velasco de la Esperanza M, et al. Defective mitochondria remodelling in B cells leads to an aged immune response. Nature Communications. 2024. https://doi.org/10.1038/s41467-024-46763-1 (Impact factor: 16.6)
-
Ibusuki A, Kawai K, Nitahara-Takeuchi A, et al. TCR signaling and cellular metabolism regulate the capacity of murine epidermal γδ T cells to rapidly produce IL-13 but not IFN-γ. Front Immunol. 2024. https://doi.org/10.3389/fimmu.2024.1361139 (Impact factor: 8.6)
-
Joulia E, Michieletto MF, Agesta A, et al. Eomes-dependent mitochondrial regulation promotes survival of pathogenic CD4+ T cells during inflammation. J. Exp. Medicine. 2024. https://doi.org/10.1084/jem.20230449 (Impact factor: 17.6)
-
Merech F, Gori S, Calo G, et al. Monocyte immunometabolic reprogramming in human pregnancy: contribution of trophoblast cells. Am J Physiol Endocrinol Metab. 2024. https://doi.org/10.1152/ajpendo.00357.2023 (Impact factor: 5.9)
-
Tagliatti E, Desiato G, Mancinelli S, et al. Microglial TREM2 shapes neuronal bioenergetics during development. Immunity. 2024. https://doi.org/10.1016/j.immuni.2023.12.002 (Impact factor: 43.5)
2023
-
Adamik J, Munson P, Maurer DM, et al. Immuno-Metabolic Dendritic Cell Vaccine Signatures Associate with Overall Survival in Vaccinated Melanoma Patients. Nature Communications. 2023. https://doi.org/10.1038/s41467-023-42881-4 (Impact factor: 16.6)
-
Jaeger M, Anastasio A, Brustlein S, et al. Light-inducible T cell engagers trigger, tune and shape the activation of primary T cells. PNAS. 2023. https://doi.org/10.1073/pnas.2302500120 (Impact factor: 11)
-
Kostel Ba S, Giuliani S, Block J, et al. A novel inborn error of immunity with biallelic mutations in NFATC1 impairing the CD8+ T-cell function via perturbed glycolysis. Blood. 2023. https://doi.org/10.1182/blood.2022018303 (Impact factor: 25.7)
-
Chimge NO, Chen MH, Nguyen Cu, et al. A Deeply Quiescent Subset of CML LSC Depend on FAO Yet Avoid Deleterious ROS by Suppressing Mitochondrial Complex I. Current Mol. Pharmacology. 2023. http://dx.doi.org/10.2174/1874467217666230906092236 (Impact factor: 4)
2022
-
Adamik J, Munson P, Hartmann FJ, et al. Distinct Metabolic States Guide Maturation of Inflammatory and Tolerogenic Dendritic Cells. Nature Communications. 2022. https://doi.org/10.1038/s41467-022-32849-1 (Impact factor: 14.9)
-
Hong HS, Mbah NE, Shan M, et al. OXPHOS Promotes Apoptotic Resistance and Persistence in TH17 cells. Science Immunology. 2022. https://www.science.org/doi/10.1126/sciimmunol.abm8182 (Impact factor: 17.7)
-
Swatler J, Lo Tartaro D, Borella R, et al. Dysfunctional subsets of CD39+ T cells, distinct from PD-1+, driven by leukemic extracellular vesicles in myeloid leukemias. Haematologica. 2022. https://doi.org/10.3324/haematol.2022.281713 (Impact factor: 11.04)
-
Michaudel C, Danne C, Agus A, et al. Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases. Gut. 2022. http://dx.doi.org/10.1136/gutjnl-2022-327337 (Impact factor: 31.8)
-
Dolfi B, Gallerand A, Firulyova MM, et al. Unravelling the sex-specific diversity and functions of adrenal gland macrophages. Cell Reports. June 2022. https://doi.org/10.1016/j.celrep.2022.110949 (Impact factor: 9.4)
-
Corral D, Charton A, Krauss MZ, et al. ILC precursors differentiate into metabolically distinct ILC1-like cells during Mycobacterium tuberculosis infection. Cell Reports. 2022. https://doi.org/10.1016/j.celrep.2022.110715 (Impact factor: 9.4)
-
Verberk SGS, de Goede KE, Gorki FS, et al. A toolbox to profile immunometabolism tested in macrophages. Cell reports methods. 2022. https://doi.org/10.1016/j.crmeth.2022.100192 (Impact factor: 10.6)
2021
-
Bosc C, Saland E, Bousard A, et al. Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nature Cancer. 2021. https://doi.org/10.1038/s43018-021-00264-y (Impact factor: 24)
-
Lopes N, McIntyre C, Martin S, et al. Distinct metabolic programmes control the effector fate of γδ T cell subsets and their activities in the tumour microenvironment. Nature Immunology. 2021. https://doi.org/10.1038/s41590-020-00848-3 (Impact factor: 27)
2020
-
Argüello RJ, Combes AJ, Char R, et al. SCENITH: A flow cytometry based method for functional profiling energy metabolism with single cell resolution. Cell Metabolism. December 2020. DOI:10.1016/j.cmet.2020.11.007 (Impact factor: 31.3).*lead author. (Impact factor: 31.3).
-
>100 citations; >600 laboratories testing the SCENITH technology.
-